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Abstract—Cellular network positioning is a mandatory re-
quirement for localizing emergency callers, such as E911 in
North America. Although smartphones are normally with GPS
modules, there are still a large number of users with cell
phones only as basic devices, and GPS could be ineffective
in urban canyon environments. To this end, the fingerprinting
positioning mechanism is incorporated into LTE architecture by
3GPP, where the major challenge is to collect geo-tagged wireless
fingerprints in vast areas. This paper proposes to utilize the
subspace identification approach for large-scale wireless finger-
prints prediction. We formulate the problem into the problem of
finding the optimal subspace over Stiefel manifold, and redesign
the Stiefel-manifold optimization method with fast convergence
rate. Moreover, we propose a sliding window mechanism for
the practical large-scale fingerprints prediction scenario, where
fingerprints are unevenly distributed in the vast area. Combining
the two proposed mechanisms enables an efficient method of
large-scale fingerprints prediction in the city level. Further, we
validate our theoretical analysis and proposed mechanisms by
conducting experiments with real mobile data, which shows
that the resulted localization accuracy and reliability with our
predicted fingerprints exceed the requirement of E911.

I. INTRODUCTION

Cellular network positioning is mainly driven by the gov-
ernments’ mandatory requirement for operators to localize the
caller in emergency situations, such as E911 in North America
and E112 in Europe [1], [2], [3]. This is because most of the
emergency callers (e.g., 60% in the Europe Union in 2013 [4],
[5]) are unable to provide their current positions accurately.
To this end, the 3rd Generation Partnership Project (3GPP)
has made the positioning methods such as Cell ID (CID)
mandatory since Release 8 [6], and specified the architecture
of fingerprinting based positioning for LTE networks in Re-
lease 9 [7]. The positioning capability also can be leveraged
for network planning, troubleshooting [13], and location based
services such as event recommendation and location-aware
advertising [2], [8], [14].

The past decades have witnessed a large body of work
devoted to indoor positioning [9], [10], [11], [12], [20], where
it is largely believed that the global navigation satellite system
(GNSS) such as GPS has satisfied the need of localization
in outdoor spaces; however, the fact is that solely relying
on GNSS is unable to meet the positioning requirement of
E911 or E112 even in outdoor spaces. First, a large number
of mobile devices without GPS functionality still remain in
use. It is found that more than 90% of Americans have cell

phones, but the smartphone adoption level is only 64% in 2015
[24], and the level for the group of senior Americans (60+)
is merely around 18% in 2014 [23]. Second, even for those
smartphone users, it has been verified in the operator’s practice
that the performance of GPS is unacceptable in urban canyon
environments. Some locations of such kind are unable to have
a single satellite visible, and a notable of locations have less
than 3 satellites visible, which is the basic requirement for
GPS localization [2], [5], [8].

Although not 100% adopted, considerable widespread use of
smartphones with the GPS module can facilitate fingerprinting
based localization, which particularly suits cellular networks
[13], [14], [16], [17], [18], [19], [21], [22]. LTE smartphones
regularly report the user measurement data (UMD) to the
database at the network edge in the network control and
management process [2], [5], [6], [7], [13], [14], [16], where
the RF measurements contained in the UMD such as the
reference signal receiving power (RSRP) can be regarded
as a kind of wireless fingerprint of the observed location.
Leveraging the natural process, the network operator can
construct a comprehensive and up-to-date fingerprints database
in a crowdsourcing manner [13]. As the basic mobile device
still needs to report the RSRP to the network periodically, then
the device’s current location can be estimated by comparing
the reported RSRP with the fingerprints database.

However, the challenge for fingerprinting localization in the
cellular network is that vast areas still need to be surveyed. The
regular UMD contains no GPS location information if some
special software is not installed in the user’s mobile device
[13], [14]; therefore, the war-driving method is still needed
to geo-tag the UMD [14], [16]. The expensive war-driving
process motivates the idea of fingerprints prediction based
on the particular radio propagation model [16]; the mobile
trajectory tracking method is also utilized to match a time
series of the UMD to a route [14], [15], [17], so that the
location information of the continuously-tracked UMD can be
derived. While such interesting ideas can be helpful handling
particular cases, a systematical approach to performing large-
scale outdoor fingerprints prediction in the city level is still an
open issue.

In this paper, we propose a large-scale fingerprints predic-
tion approach to facilitate cellular network positioning, where
we redesign the subspace identification mechanism to fully
exploit the intrinsic connections among wireless fingerprints.
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Our contributions are as following:
First, we formulate the fingerprints prediction problem into

the problem of finding the optimal subspace over the Stiefel
manifold [25], and propose a streamlined Stiefel-manifold
optimization algorithm for fingerprints prediction. The d-
dimensional Stiefel manifold is the set of all orthogonal d lin-
early independent vectors in the m-dimensional space, where
each element in the set can span a d-dimensional subspace.
The basic idea of the classic Stiefel-manifold optimization
algorithm is similar to the gradient descent method, where
the difference is that the decision variable of the former lies
in the Stiefel manifold instead of the real number domain. We
streamline the classic Stiefel-manifold optimization algorithm
to accommodate the characteristics of fingerprints prediction
(§Section IV-A), and prove convergence of the proposed algo-
rithm (§Section IV-B); moreover, we reveal the fundamental
reason why our design converges faster than an alternative
approach to optimizing decision variables over Grassmann
manifold [30], [31], [32].

Second, we propose a dynamic sliding window mechanism
to deal with the practical fingerprints prediction scenario,
where the fingerprints are unevenly distributed in the vast
area. The proposed mechanism scans the entire area multiple
times with a sliding window, where the window size increases
in each new round of scanning as the predicted fingerprints
obtained in the previous round increase the density of available
fingerprints (§Section V-A). The mechanism is highly efficient
with completing fingerprints prediction over 69.8km2 area
within 7 rounds of scanning. The crux of the mechanism
design is to determine the dimension of the subspace d for
the matrix in the sliding window. We propose to sample a
complete sub-matrix in each window matrix, and determine d
through applying singular value decomposition (SVD) to the
sub-matrix; we theoretically prove that the subspace dimen-
sion determination method incurs tractable information loss
(§Section V-B).

Third, we validate our theoretical analysis and proposed
mechanism with a real data set, which contains around
8, 820, 000 RSRP data records collected from a 69.8 km2 area
in a city. Our experimental results show that the proposed
scheme provides satisfactory accuracy of fingerprints predic-
tion. We conduct positioning experiments with the predicted
data, and the results show that the user can be localized in the
100m and 300m neighborhood of the real location at 71% and
98% respectively, which exceeds the E911 network based lo-
calization requirement regulated by the federal communication
comission (FCC): “within 100m for 67% and 300m for 90%”
(§Section VI-C). Moreover, the results verify that the proposed
streamlined Stiefel-manifold optimization algorithm converges
faster than the Grassmann manifold alternative (§Section VI-
D). Due to limitation of the space, more experimental results
are put in our technical report [34].

II. RELATED WORK

Multiple mechanisms are supported by the LTE network
positioning architecture by 3GPP [6], [7] including CID, TOA,

TDoA and fingerprinting, among which the fingerprinting
approach draws much attention in the research community;
because the CID performance is highly dependent on the
density of the BS, and the information in the practical UMD
can be insufficient for TOA and TDOA [13], [14], [16], [17],
[18], [19], [21], [22].

The major challenge for fingerprinting positioning in the
cellular network is to construct a wide-area radio map. Mar-
golies et al. develop a fingerprinting based cellular network
positioning testbed, where the radio map is constructed with
crowdsourced data from 4 million unique users whose mobile
devices are installed with a proprietary software [13]. Compre-
hensive evaluations are performed with the testbed, but there
are still wide areas not covered by the crowd workers. Ray et
al. utilize the user mobility to derive the location information
of the continuously sampled UMD by matching the UMD time
series to a physical route [14], where the predicted fingerprints
are basically along the main roads of the city. The idea of
utilizing the user mobility is also adopted by other work on
cellular network measurement [15], [17]. Chakraborty et al.
propose a geo-tag method based on Gaussian Mixture Model
(GMM) [16], where the RF signal characteristics are modeled
with a Gaussian distributed random variable.

Fingerprints prediction schemes based on matrix theory
have been applied to indoor localization systems for saving the
cost of site survey [9], [10], [11], [12], where the matrix com-
pletion algorithms are utilized [26], [27], [28], [29]. Although
also adopting the matrix completion model, our work in this
paper for the first time formulate the fingerprints prediction
problem into a Stiefel manifold optimization problem to the
best of our knowledge.

Edelman et al. present the framework to use the gradi-
ent descent method on the Grassmann and Stiefel manifold
[25]. While the Grassmann manifold optimization problem
is studied and applied in the field of image processing and
remote sensing [30], [31], [32], the Stiefel manifold is under
studied. Our work in this paper redesign the original Stiefel
manifold optimization algorithm in [25] to accommodate the
fingerprints prediction scenario, where the theoretical issues
such as convergence rate analysis and step size design are
resolved in contrast to [25].

III. PROBLEM FORMULATION

A. Fingerprints Prediction: A Subspace Identification Per-
spective

The fingerprints prediction problem can be formulated into
a matrix completion problem [9], [10], [11], [12]. The area
needs localization service is first divided into grids, and the
fingerprints sampled in grids are like elements in a matrix. The
purpose of fingerprints prediction is essentially to complete
the entire matrix by deriving the unknown elements based
on those available ones. A number of mathematical tools for
matrix completion are available, such as the singular value
thresholding (SVT) [26], singular value partition (SVP) [27],
forward-backward algorithm for matrix completion (FBMC)
[28] and iterative reweighted least squares (sIRLSp) [29].
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Though with different implementation details, those algorithm-
s are generally based on singular value decomposition (SVD).

In particular, given an incomplete m × n matrix induced
from the incomplete radio map, if we assign the values of all
unknown elements to be 0s, then we have a complete radio
map matrix A = UΛV T after SVD, where U is an m × m
real unitary matrix, Λ is an m×n rectangular diagonal matrix
with non-negative real numbers on the diagonal and V T is an
n × n real unitary matrix. It is usually assumed that A is a
low-rank matrix, which means that all the column vectors in
A are linearly dependent to each other; this is based on the
in-practice observation that fingerprints are correlated within a
certain area. To exploit the linear dependency, we could keep
d greatest singular values lying on the diagonal of Λ making it
a d×d matrix, and make the corresponding parts in U and V T

m× d and d× n matrices, respectively. Then multiplying the
three parts results in a new m × n matrix Â, which contains
estimations to those unknown elements originally assigned
values of 0s in A.

The essence of the SVD method is actually to find a lower
dimensional subspace that contains all the column vector in
Â. Consider an m-dimensional space that contains all m-
dimensional column vectors in A, if most of those vectors are
linearly dependent with each other, then most of them should
belong to a lower dimensional subspace of the m-dimensional
space. For example, imagine that there are some points in
the 3-D space, if most of the points are linearly dependent
with each other, then those points should be in a 2-D plane
or a straight line. In SVD, the residual m × d matrix U is
such a lower (d) dimensional subspace induced by the greatest
d singular vectors. If such a lower dimensional subspace
is found, any vector residing in the subspace are available,
which is the fundamental reason the unknown elements can
be estimated.

The accuracy of the elements estimation is highly dependent
on whether the obtained subspace indeed contains most of the
vectors in A. There are infinite number of possible subspaces
that can be induced by A; however, the SVD method factually
always finds one specific type of the subspace. This is because
the input of the SVD method always assigns the values of
unknown elements to be 0s. Assigning different values to those
unknown elements results in different subspaces, but there
are infinite number of possible situations, which makes SVD
method unable to guarantee that the found subspace is always
optimal. In the following, we are to show how to find the
optimal subspace in the whole set of possible subspaces.

B. Problem Formulation

The fingerprints prediction problem can be formulated into
the following matrix completion problem: minΩ,Â ||PΩ(A)−
PΩ(Â)||, s.t. |Ω| ≤ |Ωm|, where || · || represents any suitable
norm and A is the matrix representing the radio map. Since
some elements in A have not been measured thus unavailable,
we use PΩ(A) to denote those available fingerprints in A.
The fingerprints prediction mechanism results in Â; this is
a complete estimation of A, which contains estimations to

those unmeasured fingerprints in corresponding postions. The
physical meaning of the problem is to find Â that minimizes
the deviation from the available observations denoted by
PΩ(A), given the limited number of observations |Ω| ≤ |Ωm|.

The j-th column of A can be regarded as an m-dimensional
vector denoted by aj , and all the column vectors are in an m-
dimensional space denoted by M . Since ajs are correlated
to each other, then we can assume that the matrix A is a
rank-d matrix, which means that all vectors of A belong to a
d-dimensional subspace of M . However, as some elements in
A are unknown, to obtain a prediction of those elements, we
want to find a rank-d matrix Ad based on the known elements
in each aj . The Ad found must be a complete matrix and
Ad = UdΛdV

T
d after SVD, where the matrix Ud contains

d m-dimensional orthogonal vectors, which can span an d-
dimensional subspace of M . Finding Ad directly could be
challenging, but due to the property of the low rank matrix, if
we can find Ud, then Ad can be derived.

The problem is now transformed into a subspace identifica-
tion problem in the following form:

min
Ud:m×d
wj :d×1

n∑
j=1

||[Udwj ]Ω − [aj ]Ω||22, (1)

where Udwj represents the column vector in Ad corresponding
to the column vector in A denoted by aj . Since aj could be
incomplete, we use [aj ]Ω to denote the available elements in
aj ; the corresponding elements in Ad is denoted by [Udwj ]Ω,
as the matrix Ad can be transformed into Ad = UdW with
W = ΛdV

T
d , where wj is the jth column of W .

The problem (1) distinguishes itself from other commonly
seen optimization problems in that the decision variable Ud is
a subspace in the form of a matrix. Recall the m-dimensional
space where all vectors of A are in, all d-tuples of orthogonal
m-dimensional vectors form a d-dimensional Stiefel manifold;
therefore, the problem becomes to find a point in the Stiefel
manifold considering the objective function in (1). This is a
Stiefel manifold optimization problem [25].

It is worth mentioning that multiple points in the Stiefel
manifold can possibly form the same subspace, because one
subspace may have multiple sets of basis. All those lower-
dimensional subspaces in the m-dimensional space form an-
other kind of manifold known as Grassmann manifold [30],
[31], [32], which is to be used for convergence proof in
the discussion later. We will theoretically prove that the
convergence rate of our proposed mechanism based on Stiefel
manifold can be higher than performing optimization over
the Grassmann manifold, which especially suits fingerprints
prediction in extremely large-scale areas.

IV. STREAMLINED STIEFEL MANIFOLD OPTIMIZATION

A. Algorithm Design

The basic idea of the Stiefel manifold optimization approach
is similar to the gradient descent method, which is frequently
used in resolving optimization problems. The gradient descent
method starts with a given point on a curve representing the
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objective function, and iteratively takes steps proportional to
the negative of the gradient of the function at the current
point. The method can be extended to the Stiefel manifold
optimization problem [25]; however, the practical scenario
of fingerprints prediction problem can not fit in the general
framework presented in [25]. Moreover, it is not mentioned in
[25] whether the approach will converge, and how to choose
important parameters to guarantee performance, which makes
it necessary to streamline the existing Stiefel manifold opti-
mization approach. We are to go through the classic Stiefel-
manifold optimization approach and show the challenge to be
confronted in resolving the fingerprints prediction problem,
and then present the streamlined design of the approach for
dealing with the challenges.

Challenge 1: Determine the direction of iteration. The
first step in [25] is to determine the direction of iterations,
which is realized by finding the Hessian matrix H with respect
to the objective function F =

∑n
j=1 ||[Udwj ]Ω− [aj ]Ω||22, and

then finding the inverse of H . However, we find that H for
the fingerprints prediction problem may not have full rank,
thus the H−1 may be unavailable. To this end, we propose
to replace H−1 with the gradient of the objective function
∇F , where the intuition is that ∇F also represents a possible
iteration direction.

Challenge 2: Complex objective function. The second
step is to find the common iteration equation: Ud,t+1 =
Ud,tMt + QNt, where Q satisfies the QR decomposition of
(I − Ud,tUTd,t)∇F , and Mt and Nt satisfy[

Mt

Nt

]
=

(
exp

(
t

[
UT

d,t∇F −RT

R 0

]))[
Id
0

]
, (2)

where we replace H−1 with ∇F . However, it is noted that Ud
and wj are factually dependent to each other, since Ad = UdW
with W = ΛdV

T
d and wj is the jth column of W . Moreover,

there is a matrix exponential function in the iteration, which
we find could hinder finding the iteration equation due to the
tedious form involving infinite matrix series.

We propose to replace the original objective function with
F (Ud) = minxj ||[Udxj ]Ω − [aj ]Ω||22, which decouples the
dependence between Ud and wj . It is straightforward that
wj = x∗j = argminxj ||[Udxj ]Ω− [aj ]Ω||22. The new objective
function is factually the item of the summation in the objective
function in problem (1). A natural question is: will the solution
with the new objective function be the same as that with the
original objective function?

It is straightforward to verify that the second order derivative
of F (Ud) with respect to Ud is a semi-definite matrix, which
means that the new objective function is convex thus definitely
can achieve a unique minimum value. However, the solution
for optimizing different items to make each item achieve the
minimum value may be different. Recall the nature of A that
the column vectors ajs of A fall in a d-dimensional subspace
due to their correlation. In the process of optimizing each
item, the solution must make the corresponding aj fall in
the same d-dimensional subspace. However, even if solutions
of optimizing all those items can make those ajs fall in

the subspace, they are not necessarily the same, because
each solution is factually a set of basis of the d-dimensional
subspace according to the definition of Stiefel manifold. It
is possible that the solutions of optimizing different items
vary, because the subspace can have multiple sets of basis.
Nevertheless, the interesting point is that, since each solution is
a set of basis of the same subspace, then any element vector in
a given set of basis definitely can be represented by any other
set of basis. This means that if an item achieves the minimum
value, the corresponding solution can also make other items
achieve the minimum value; therefore, the solution of the
transformed problem is indeed the solution of the original
problem.

Challenge 3: Obtain the common iteration equation.
Based on the revision mentioned above, we now try to obtain
the common iteration equation, which requires to perform QR
decomposition to the matrix (I − UtUTt )∇F 1.

Since ∇F = −2rtw
T
t − Ut(−2rtw

T
t )TUt = −2rtw

T
t

with rt = PΩ(Udwj − aj), we have (I − UtU
T
t )∇F =

2rtw
T
t with UTt rt = 0, where wt = x∗j for the current

vector aj we are considering. This means that the rank
of the matrix is 1 thus it is impossible to perform QR
decomposition to the matrix. To deal with this challenge,
we propose to replace QR decomposition with SVD, so that
we can still obtain an orthonormal matrix Q. We relax the
constraint in classic SVD and allow the matrix R to be
singular, then we have Q = [ rt

||rt|| q2 q3 · · · qn] and
R = [2||rt||wt 0 0 · · · 0]T , where q2, q3, ...qn are all
orthonormal singular vectors and orthogonal to rt

||rt||
2. Then

we have Mt = Id and Nt = ηtR with the consequent common
iteration equation:

Ut+1 = Ut + 2ηt
rtw

T
t

||rt||||wt||
, (3)

where ηt is the step size parameter.
Challenge 4: Determine step size of iteration. Before

executing the iteration, we must determine the step size
first. Imagine the subspace identification process, we can first
estimate a subspace Ut and see if the aj we are considering
is in the subspace. If aj is not in Ut, the angle between
the projection of aj on Ut and aj itself denoted by θ must
be unequal to zero. Then we need to rotate the subspace to
decrease θ to find a new estimation of the subspace. The degree
of the rotation is factually the step size and it is straightforward
that the step size should just make θ = 0. Then we continue to
rotate the previously estimated subspace Ut in the same way to
make it contain other ajs, and the resulted Ut is the subspace
we are finding. More precisely, we are trying to find the set
of basis that spans a subspace containing all ajs according to
the definition of Stiefel manifold.

Define a d × d matrix Wt in the t-th iteration, where
Wt = [ wt

||wt|| Ct]. Note that Ct is a d × (d − 1) matrix,

1Note that we use F to denote F (Ud) and Ut to denote Ud,t respectively
for the convenience of presentation, and such denotations are also to be
adopted in the following discussions.

2Hereinafter we use || · || to represent || · ||2, the 2-norm of a vector.
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whose columns are unit vectors and all orthogonal to wt

||wt|| .
According to Gram-Schmidt transformation, Ct can be turned
into a new matrix with all columns orthogonal to each other.
Here we assume the columns of Ct are orthogonal to each
other for the convenience of presentation. Multiply Wt in
both sides of equation (3), we have Ut+1Wt = UtWt +
2ηt

rt
||rt||

[
1 0 0 · · · 0

]
. The physical meaning of such

operations is to perform rotation to the estimated subspace
Ut, and the equation above can be further transformed into
Ut+1

wt

||wt|| = pt
||wt|| + 2ηt

rt
||rt|| , where ||pt|| = ||wt||. Note that

pt is the projection of aj on Ut, rt
||rt|| is a unit vector that

is orthogonal to Ut; therefore, the degree Ut to be rotated is
determined by ηt. We need to take an appropriate value of ηt
so that aj can fall in the resulted Ut+1, which results in the
step size in iteration t: ηt = 1

2
||rt||
||wt|| .

After overcoming the challenges above, we present the
streamlined Stiefel-manifold optimization algorithm (SSOA)
as in Algorithm 1, where we use UΩ to denote the rows of U
whose index is in Ω.

Algorithm 1: Streamlined Stiefel-manifold optimization
algorithm (SSOA)

Input:
An initial column-orthonormal m× d matrix U0;
sample set Ω, m× n sample matrix PΩ(A);
maximum number of iteration T .

Output:
Estimated matrix Ad.

1: t = 0;
2: while t < T do
3: Randomly choose a column index q ∈ {1, 2, ..., n},

get [aq]Ω;
4: wt = ([Ut]

T
Ω[Ut]Ω)−1[Ut]Ω[aq]Ω;

5: pt = Utwt;
6: rt = [aq]Ω − PΩ(pt);
7: Ut+1 = Ut +

rtw
T
t

||wt||2 ;
8: t = t+ 1;
9: end while

10: U = Ut;
11: for each i ∈ {1, 2, ..., n} do
12: âi = U([U ]TΩ[U ]Ω)−1[U ]Ω[ai]Ω;
13: end for
14: Ad = [â1, â2, ..., ân].

B. Convergence Analysis

The challenge to prove the convergence of the proposed
SSOA in Algorithm 1 is that the elements in each aj are not
completely known. In particular, recall that the problem (1) we
study is to find the Ud that minimizes the objective function,
we can claim Algorithm 1 converges if we can indeed find the
Ud, which spans a subspace containing all vectors ajs in A,
but aj is incomplete itself.

We use βt(U,Ut) = 1 − δt(U,Ut) = 1 − |UTUt|2 as
the metric of measuring the distance between the estimated
subspace in the t-th iteration Ut and its true value U [32],

where |UTUt| means the determinant of UTUt. Recall that we
assume A is a rank-d matrix, where the subspace U contains
all the vectors in A. According to the definition, if U and Ut
span the same subspace, then βt(U,Ut) = 0; if U and Ut are
orthogonal to each other (any column in U is orthogonal to
all columns in Ut), then βt(U,Ut) = 1 meaning that U and
Ut have the largest distance.

With the metric, we can prove that SSOA converges at least
as fast as Grassmann-manifold optimization algorithm, which
is put in our technical report [34] due to the limitation of
the space. We here prove that SSOA converges faster than
Grassmann-manifold optimization algorithm with appropri-
ately choosing the iteration step size ηt. Faster convergence
rate is very meaningful especially for large-scale fingerprints
prediction.

Theorem 1. Denote σi(A) as the i-th largest singular value
of A and λi(A) as the i-th largest eigenvalue of A. If we set
the step size ηt such that

λ1(UTt Ut)

λ1(UTt Ut) + 4η2
t

λd(U
T
t Ut)

λ2(UTt+1Ut+1)
(1 + 2ηt

||rt||
||pt||

)2 >
||at||2

||pt||2
,

(4)
then the convergence rate of the SSOA is strictly greater than
||at||2
||pt||2 , which is known as the convergence rate of Grassmann-
manifold optimization algorithm [32].

Proof. Note that Ut+1 and Ut are not necessarily with or-
thonormal columns with the step size ηt now. We first apply
the QR decomposition to Ut+1 and Ut denoted by Ut+1 =
UQt+1Rt+1 and Ut = UQt Rt, respectively. Similar to the
derivation in Lemma 1 in technical report [34], we can derive

δt+1

δt
=
|(UQ

t+1)TU |2

|(UQ
t )TU |2

=
|R−1

t+1|2

|R−1
t |2

((pt + 2ηt
||pt||
||rt|| rt)

T at)
2

(pTt at)
2

. (5)

Note that (i) Ut+1 and Rt+1 share the same singular values
since multiplying an orthogonal matrix does not alter the
singular values; (ii) Rt+1 is a diagonal matrix, thus we have
|R−1
t | = 1∏d

i=1 σi(Ut)
and |R−1

t+1| = 1∏d
i=1 σi(Ut+1)

where

σi(Ut+1) =
√
λi(UTt+1Ut+1) =

√
λi(UTt Ut + 4η2

t
wtwT

t

||wt||2 ),

based on the fact that UTt rt = 0. Since wtw
T
t is a rank-1

matrix, with the only non-zero eigenvalue ||wt||2, therefore
according to Weyl’s inequality [33], we have

λi(U
T
t Ut + 4η2

t

wtw
T
t

||wt||2
) ≥

{
λ1(UTt Ut) + 4η2

t , i = 1;

λi−1(UTt Ut), i ≥ 2.
(6)

With Eqn. (5) and Inequality (6), it is easy to derive
δt+1

δt
≥ λ1(UT

t Ut)

λ1(UT
t Ut)+4η2t

λd(UT
t Ut)

λ2(UT
t+1Ut+1)

(1 + 2ηt
||rt||
||pt|| )

2. Since RHS

of the inequality is greater than ||at||
2

||pt||2 , the convergence rate
of Grassmann-manifold optimization algorithm as presented
in [32], the convergence rate of Stiefel-manifold optimization
algorithm is faster.

Theorem 1 presents the general condition where SSOA
outperforms Grassmann-manifold optimization algorithm in
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convergence rate. In fact, based on experiments on the real
big datasets in Section VI we find that (i) λ1(UTt Ut) surges
rapidly and becomes much greater than λ2(UTt+1Ut+1) and
λd(U

T
t Ut); (ii) λd(UTt Ut)/λ2(UTt+1Ut+1) ∈ [c, 1] with the

constant c > 0, both of which are verified by real datasets
in our technical report [34] in detail. Then we present a more
practical condition in Proposition 1 that can facilitate deter-
mining the step size in practice, which is an approximation to
the general Theorem 1.

Proposition 1. We set γt =
λd(UT

t Ut)

λ2(UT
t+1Ut+1)

∈ [c, 1]. If we choose

the step size ηt such that 1
2
||at||−||pt||√

c||rt||
< ηt <<

1
2σ1(Ut), then

the convergence rate of the SSOA is strictly greater than that
of Grassmann-manifold optimization algorithm.

Proof. Since λ1(UTt Ut) >> λ2(UTt+1Ut+1) = γtλd(U
T
t Ut),

we can approximate Inequality (4) in Theorem 1 as γt(1 +

2ηt
||rt||
||pt|| )

2 > ||at||2
||pt||2 . Then we can easily obtain ηt >

1
2
||at||−||pt||√

c||rt||
. On the other hand, we need to ensure that ηt <<

1
2σ1(Ut) to let λ1(UT

t Ut)

λ1(UT
t Ut)+4η2t

→ 1. Thus if 1
2
||at||−||pt||√

c||rt||
<

ηt <<
1
2σ1(Ut), the convergence rate of SSOA is larger than

that of Grassmann-manifold based algorithm.

C. Discussions

The fundamental reason that the Stiefel-manifold optimiza-
tion approach converges faster than the Grassmann-manifold
counterpart is that the physical meaning of a point on the
Stiefel-manifold is a set of basis of a d-dimensional subspace
and that on the Grassmann-manifold is a d-dimensional sub-
space itself. It is supposed that our optimization algorithm
should measure the distance between aj and the estimated
set of basis in each iteration; however, such kind of iteration
will definitely incur high computational complexity due to
the finer-granularity of distance metric. Since a set of basis
can span a subspace, we use the angle between aj and its
projection on the subspace as the distance metric in our
algorithm design. In this case, the solution of our algorithm is
factually the subspace spanned by the set of basis, instead of
the particular set of basis itself the traditional Stiefel-manifold
optimization mechanism is finding. This is because a subspace
can have multiple sets of basis.

U U1,U2,U3...

Grassmann

Fig. 1. Convergence over Stiefel and Grassmann manifold.

However, this means that there may exist multiple solutions
can be obtained by our proposed SSOA, and any one of
the solutions can satisfy the requirement. Recall that we
transformed the objective function in the algorithm design
(Section 3.1), and the new objective function is convex, then
the situation of optimizing over the Stiefel manifold is like
that illustrated in the right part of the Fig. 1, and the left
part of the figure shows the situation of optimizing over the

Grassmann manifold. There could be multiple solutions on
the Stiefel manifold, but only one solution on the Grassmann
manifold, because a d-dimensional subspace is just regarded as
a point on the Grassmann manifold according to the definition.
Consequently, it is easier to find a solution on the Stiefel
manifold and the convergence rate is higher. We present
numerical analysis results in our technical report [34] showing
the average number of iterations for completing 500 randomly
generated matrix on the Stiefel and Grassmann manifold,
respectively; it is clear that the proposed SSOA requires less
number of iterations compared with the Grassmann-manifold
optimization algorithm. The experimental results with real data
to be presented in Section V-D also corroborates our analysis.

V. FINGERPRINTS PREDICTION WITH SLIDING WINDOW

A. Sliding Window Mechanism Design

In practice, the sampled wireless fingerprints for cellular
networks are unevenly distributed in the vast area, as to be
shown in Section VI. It is impossible to complete the matrix of
the entire area in one shot, since the sampled data are sparsely
distributed in some subareas. To deal with this issue, we can
create a sliding window to scan the entire area in a row-by-row
manner. In particular, we first grid the entire area into square
cells, where the edge length of each cell is dependent on the
accuracy requirement (normally in tens of meters). We then
let the sliding window cover a number of such cells and move
from left to right and top to bottom so that the entire area can
be scanned. The sliding window’s movement step size in both
horizontal and vertical direction is randomly assigned, so that
the predicted fingerprints obtained in the window’s previous
location can be utilized to predict the fingerprints in the current
area covered by the window.

Moreover, the window size must be set small enough ini-
tially to make sure there are enough amount of data available
within the window for prediction. After a round of scanning,
we have predicted fingerprints available in some cells, which
can be regarded as the training data thus the density of
available fingerprints increases. Then we could enlarge the
window and scan the entire area again still in a row-by-row
manner. In this way, we scan the area multiple times, so that
fingerprints in most of the area can be predicted.

The crux of the sliding window design is to determine the
window size, which is essentially to determine the dimension
d of the subspace. This is because the length and width of
the sliding window must be greater than d, or it is impossible
to predict the fingerprints in the unsampled cells. However,
the challenge is that the matrix corresponding to the sliding
window itself is incomplete. To deal with it, we propose to
determine d of the sliding window matrix by sampling a
complete sub-matrix within the window. The rationale is that if
the vectors in the window matrix are correlated, the correlation
should be reflected by any sub-matrix within. The question is
how good we can predict the fingerprints in the window matrix
if we determine d in this way.

The corner stone assumption of the subspace identification
approach is that all the vectors in the window matrix, denoted
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by A is in the same subspace denoted by Ud. (In this section
we use A to denote the window matrix, different from the radio
map in previous sections.) However, although the fingerprints
are correlated, some vectors indeed are not in Ud thus incur
prediction errors. Note that a large-valued d can decrease such
error since more vectors can be included in Ud, but requires
more elements in A to be available; in contrast, a small-
valued d can increase the error, but it can accommodate more-
sparsely-sampled A.

In particular, A = UΛV T , and we use σi = Λii, i =
1, 2, ...,m (set m < n) to denote the i-th largest singular value
of A. Suppose we had known d, then we approximate A with
Ad = UdΛdV

T
d , where Ud and Vd are the first d columns of

U and V respectively, and Λd is the sub-matrix comprised of

the first d columns and rows of Λ. We use ld =

√∑d
i=1 σ

2
i∑m

i=1 σ
2
i

to denote the remained information after the approximation
which only includes the largest d singular values in Λ. The
rationale is that most of the information of the matrix lies
in the largest singular values of the matrix after SVD. It is
straightforward that a greater d leads to a greater ld.

In the following discussion we will theoretically prove that
the gap between the remained information of the complete sub-
matrix we sample within the window l̃d and that of the whole
sliding window matrix ld is small enough when the correlation
of the columns of the sliding window matrix is strong. This
validates that we can determine d of the sliding window matrix
by conducting SVD on the complete sub-matrix within the
window, with similar remained information.
B. Remained Information Analysis

Theorem 2. We use ld and l̃d to denote the remained informa-
tion of the incomplete p× q window matrix A and a complete
s× t sub-matrix Ã within, where we set p ≤ q and s ≤ t, and
d is the dimension of the subspace obtained by performing
SVD to the sub-matrix; if the linear correlation of fingerprints
is strong enough in the window matrix A, then |ld − l̃d| → 0.

Proof. Denote the following SVDs: A = UΛV T , Ã =
Ũ Λ̃Ṽ T , Ad = UdΛdV

T
d and Ãd = ŨdΛ̃dṼ

T
d . The window

matrix A is highly linearly correlated, which means that
almost all the information is contained within the subspace
spanned by several principal axes while the other ones can be
reasonably neglected. Then we have

∑p
i=d+1 σ

2
i∑p

i=1 σ
2
i
→ 0. Based

on Taylor’s expansion, we obtain ld =

√
1−

∑p
i=d+1 σ

2
i∑p

i=1 σ
2
i
≈ 1−

1
2

∑p
i=d+1 σ

2
i∑p

i=1 σ
2
i
≈ 1− 1

2
||Λ−Λd||2F
||Λ||2F

. Similarly, l̃d ≈ 1− 1
2
||Λ̃−Λ̃d||2F
||Λ̃||2F

,
thus according to Lemma 2 in technical report [34], we obtain

|ld − l̃d| =
1

2
| ||Λ− Λd||2F
||Λ||2F

− ||Λ̃− Λ̃d||2F
||Λ̃||2F

| ≤ 1

2
max{S, T},

(7)
where S =

min{||Λ−Λd||2F ,
p
s ||Λ̃−Λ̃d||2F }

p
s ||Λ̃||

2
F ||Λ||2F

|||Λ||2F −
p
s ||Λ̃||

2
F | and

T = 1
max{||Λ||2F ,

p
s ||Λ̃||

2
F }
|||Λ − Λd||2F −

p
s ||Λ̃ − Λ̃d||2F |. For S,

set Ă = ÃV Tp , where Vp is an q × t matrix with orthonormal
columns and Ă is an s × q matrix. Let Z = p

s Ă
T Ă − ATA,

which is an q × q matrix. Note that (i) |||Λ||2F −
p
s ||Λ̃||

2
F | =

|
∑p
i=1 σ

2
i −

p
s

∑s
i=1 σ̃

2
i |; (ii) p

s Ă
T Ă and ATA are both sym-

metric matrices; (iii) Ă and Ã share the same singular values.
According to Lemma 3 and 5 in technical report [34],

||Z||2F =

p∑
i=1

λ2
i (Z) ≥

p∑
i=1

(λi(A
TA)− p

s
λi(Ă

T Ă))2

≥ 1

p
(

p∑
i=1

σ2
i −

p

s

s∑
i=1

σ̃2
i )2 =

1

p
|||Λ||2F −

p

s
||Λ̃||2F |2.

Then S ≤ min{||Λ−Λd||2F ,
p
s ||Λ̃−Λ̃d||2F }

p
s ||Λ̃||

2
F

√
n.

Now we focus on T . If ||Λ||2F ≥
p
s ||Λ̃||

2
F , then

T ≤ ||Λ− Λd||2F
||Λ||2F

+
p

s

||Λ̃− Λ̃d||2F
||Λ||2F

≤ ||Λ− Λd||2F
||Λ||2F

+
||Λ̃− Λ̃d||2F
||Λ̃||2F

.

(8)
Similarly, if ||Λ||2F < p

s ||Λ̃||
2
F , we also have Inequality (8).

Then if the linear correlation of fingerprints in A is strong,
||Λ − Λd||2F and ||Λ̃ − Λ̃d||2F approach zero, which makes
both S and T approach zero. According to Eqn. (7), we prove
that |ld − l̃d| → 0, which means that using Â to estimate the
subspace dimension d for A does not incur much deviation in
remained information (information loss).

VI. EXPERIMENTAL RESULTS

We do experiments with real data sampled by a network
operator in two cities, where the data sets are sampled within
48 hours, covering 2.2 km2 and 69.8 km2 areas in the
two cities and containing around 60, 000 and 8, 820, 000 data
records, respectively. Due to the limitation of the space, this
section shows the experimental results with the larger data set,
and the results with the small data sets can be found in [34].

A. Overview of Fingerprints Prediction Results

The map of the city where the data are sampled is shown in
Fig. 2(a); the red dots on the map represent the location of the
BSes. We use fingerprints collected along the main roads of the
city to predict the fingerprints on those branching roads. The
spatial distribution of fingerprints on main road are shown in
Fig. 2(b), which covers only 6.7% of the whole region. After
7 iterations of sliding window based prediction mechanism
with SSOA, we obtain Fig. 2(c) shown the prediction result.
The predicted region accounts for 73.2% of the whole region,
having fingerprints in most of the locations predicted. To
examine the prediction accuracy, we compare the predicted
results with the ground true, and show corresponding error of
each prediction in Fig. 2(d), where different colors represent
different levels of errors in dBm. We find that the average and
median predicting errors are 8.46 and 7.09 respectively.

B. Local Performance of Fingerprints Prediction

We here show the local performance of fingerprints pre-
diction in Fig. 2(d). In particular, we randomly sample a
250m× 300m sub-area over the city region as shown in Fig.
2(d) multiple times, and examine the prediction performance
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(a) Target region and BSes distribution (b) Fingerprints on main roads (c) Predicted fingerprints

(dBm)
0   10   20  30  40 

(d) Prediction errors distribution

(e) Average prediction errors (f) CDF of prediction errors (g) CDF of localization errors (h) Convergence comparision

Fig. 2. Experimental Results on 69.8km2 Data Set

within the window each time. Then the average and distribu-
tion of the errors can be obtained.

Fig. 2(e) shows the average, maximum and minimum pre-
diction errors when we select different numbers of sub-areas to
examine. It can be found that the average prediction error (the
bars) fluctuates slightly around 8.5dBm in different number of
windows varying from 10 to 100, with the standard deviation
0.17dBm. This indicates the stability of average predicting
performance in different sub-areas. We can also see that the
minimum value is generally much closer to the average error
than the maximum value, indicating that the good predictions
are more than the bad ones. Fig. 2(f) shows the cumulative
distribution function (CDF) of prediction errors. It can be
seen that the CDFs under different numbers of samplings
approximately overlap with each other, indicating that the
prediction performance in each sub-area is stable.

C. Positioning Results with Predicted Fingerprints

We here validate that the predicted fingerprints can be uti-
lized for location estimation with the accuracy and reliability
satisfying E911 requirement. We first grid the entire area into
871 × 663 square cells with each edge length to be 11m.
Although the data set contains data from 611 BSes, a number
of base stations are only observed at a couple of locations.
Thus we first sort the BSes according to the frequency they
are observed at all locations of the area, and select the top
135 BSes. Then the corresponding data account for 96%
of the entire data set. To perform localization, we choose
those cells that both have the measured and the predicted
fingerprints. We construct a fingerprints database with the
predicted fingerprints, and use the real data as the user’s
reported data for localization. According to the statics of the
data set, a user’s mobile device normally can observe 1 to
12 BSes, and our preliminary experimental results show that
the localization accuracy will be unacceptable if the user just
report the fingerprint with respect to only one BS; therefore,
we just consider the cells that can observe at least two BSes.

With our predicted fingerprints, we compare the perfor-
mance of fingerprinting localization with that of Cell ID (CID)
and Gaussian Mixture Model (GMM) based method [16].
The basic idea of the CID approach is to estimate the user’s
location to be the geometric center of all BSes the user can
observe; GMM method is to estimate the location of a reported
fingerprint using the GMM model constructed based on the
Gaussian radio propagation model, which also can be regarded
as a method to predict a given fingerprint’s location.

We perform localizations for around 4500 times by three
methods respectively, and draw the CDF of localization errors
for each method, as shown in Fig. 2(g). The localization
error is the Euclidean distance between the user’s estimated
location and the ground truth. We use the E911’s localiza-
tion requirement benchmark to evaluate the three localization
methods, which is “within 100m for 67% and within 300m
for 90%”. We can see that the fingerprinting method using
our predicted fingerprints by SSOA achieves “within 100m for
71% and within 300m for 98%”, CID method achieves “within
100m for 34% and within 300m for 93%”, and the GMM
method achieves “within 100m for 14% and within 300m
for 75%”. This is because CID’s performance is impacted by
the unbalanced distribution of BSes, and GMM’s assumption
that the received signal strength at a given location is a
multivariate Gaussian distributed random variable [16] is not
always realistic especially in urban environment with more
serious shadowing and multipath effects.

D. Convergence Rate

Our convergence analysis reveals that the proposed SSOA
mechanism converges faster than the Grassmann-manifold
optimization algorithm, and we now provide experimental
results to validate this claim. We consider the entire area as
a giant matrix, and use 40% of the data as the training set
to predict the rest of the data. We let the SSOA and the
Grassmann-manifold optimization algorithm iterate 60, 000
times and examine the prediction error after each iteration. The
prediction error is found by comparing the predicted data and
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the real data in the other 60% of the data set, and each error
is represented as a point in Fig. 2(h). It shows that the average
prediction error using SSOA reaches around 11dBm within
1000 times, while the error using Grassmann method only
reaches around 12.5dBm after 30000 times. It takes 75min
for the Grassmann method to reach 12.5dBm error, while
our proposed SSOA just consumes around 2min to achieve
11dBm error.

VII. CONCLUSION

This paper has proposed to utilize the subspace identifica-
tion approach to predict fingerprints in unsurveyed areas with
available fingerprints sampled in the nearby areas. We have
formulated the fingerprints prediction problem into the prob-
lem of finding the optimal subspace over the Stiefel manifold,
and proposed a streamlined Stiefel-manifold optimization al-
gorithm with fast convergence rate for the fingerprints predic-
tion scenario. Moreover, we have proposed a sliding window
mechanism to deal with the practical fingerprints prediction
scenario, where the fingerprints are unevenly distributed in the
vast area. Combining the two proposed mechanisms enables an
efficient method to predict large-scale fingerprints prediction
in the km2 level. Further, we have validated our theoretical
analysis and proposed mechanisms by conducting experiments
with real mobile data sets sampled in two cities; it has been
shown that the localization accuracy and reliability exceed
the requirement of E911 by FCC, moreover, the convergence
rate of the proposed mechanism outperforms the Grassmann
approach with the similar methodology.
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